

Journal of Pharmaceutical **Research and Technology**

Open

Access

Journal homepage: https://journalprt.com/

Review

Herbal Bioenhancers: A Natural Strategy for Enhancing Drug Absorption and Therapeutic Efficacy

Shivshankar M. Nagrik^{1*}, Vaishnavi P. Wawge¹, Ashwini G. Verulkar¹, Shreya B. Nakaskar¹, Aishwarya R. Ade¹, Gayatri S. Sapkal¹, Nayana G. Dhage¹, Rajashree Khobarkhede¹, Rutuja Dafade¹ ¹Rajarshi Shahu College of Pharmacy Buldhana, Maharashtra, India-443001

Article Info

*Corresponding author: Shivshankar M. Nagrik,

shivshankarnagrik11@gmail.com

Received: 25/02/2025 Revised: 18/03/2025 Published: 22/03/2025

Keywords:

Herbal bioenhancers, Drug absorption, Enzyme inhibition, Regulatory concerns, Clinical trials.

Abstract:

The therapeutic efficacy of numerous pharmaceutical drugs is often limited by poor bioavailability, necessitating higher dosages that may lead to adverse effects. Herbal bioenhancers, derived from natural plant sources, offer a promising approach to improving drug absorption and efficacy. These compounds work through various mechanisms, including inhibition of drug-metabolizing enzymes, modulation of drug transporters, enhancement of gastrointestinal permeability, and alteration of the pharmacokinetic profile of coadministered drugs. Unlike synthetic bioenhancers, bioenhancers are characterized by lower toxicity, cost-effectiveness, sustainability, and minimal side effects, making them an attractive alternative in drug formulations. Several well-studied herbal bioenhancers, such as piperine (Piper nigrum), curcumin (Curcuma longa), quercetin (Allium sativum), and silymarin (Silybum marianum), have demonstrated significant potential in enhancing drug bioavailability. Piperine inhibits drug-metabolizing enzymes such as CYP3A4 and enhances gastrointestinal permeability, leading to increased systemic drug concentrations. Curcumin modulates drug and exhibits transporters synergistic antioxidant and inflammatory effects. Quercetin improves drug solubility and inhibits efflux transporters like P-glycoprotein, thereby preventing premature drug elimination. Gingerol and aloin further contribute by enhancing intestinal absorption and influencing enzyme activity. This review comprehensively explores the mechanisms of herbal bioenhancers, their role in improving drug bioavailability, and their applications in pharmaceutical formulations, including their use in combination with synthetic drugs and targeted delivery systems. Additionally, clinical and preclinical studies on herbal bioenhancers are discussed, highlighting their potential in modern medicine. While challenges such as regulatory concerns and standardization persist, the integration of herbal bioenhancers in drug development holds promise for safer, more effective, and personalized therapeutic approaches.

1. INTRODUCTION

Bioenhancers, often referred to as substances that improve the bioavailability of drugs, are compounds that, when coadministered with drugs, enhance their absorption, distribution, metabolism, and excretion. This enhancement can result in improved therapeutic outcomes by making the drug more effective at lower doses or improving the speed at which the drug reaches therapeutic levels bloodstream. Bioenhancers act through various mechanisms, including modulation of intestinal enzymes, alteration of drug transporters, or inhibition of drugmetabolizing enzymes in the liver (1). The aim of bioenhancement is to ensure that a drug reaches the systemic circulation in sufficient quantities to exert its desired therapeutic effects. Bioavailability refers to the proportion of an administered dose of a drug that reaches the systemic circulation and is available to act on its target site. The bioavailability of a drug can be influenced by numerous factors, including its solubility, permeability, metabolism, and the presence of efflux pumps that limit absorption (2). Inadequate bioavailability often leads to suboptimal therapeutic effects, requiring higher doses to achieve the desired outcome, which may increase the risk of side effects and toxicity. Enhancing bioavailability is crucial for improving drug efficacy, especially in cases where drugs exhibit low

natural bioavailability due to poor solubility, limited intestinal absorption, or rapid metabolism. Pharmaceutical researchers have long sought ways to improve the bioavailability of drugs, particularly those with narrow therapeutic windows, to maximize their clinical utility and minimize the adverse effects associated with highdose therapies (3). Herbal bioenhancers are natural plant-derived substances that have been shown to improve the absorption and efficacy of various drugs. They have gained significant attention due to their minimal toxicity, availability, and sustainability. Many herbal bioenhancers work modulating the gastrointestinal environment, enhancing drug solubility, inhibiting metabolic enzymes, or increasing intestinal permeability. The use of herbal bioenhancers offers several advantages over synthetic bioenhancers, such as lower cost, lower toxicity, and fewer side effects (4).The scientific community has investigated several herbs that can serve as bioenhancers, including piperine from *Piper* nigrum, curcumin from Curcuma longa, quercetin from Allium sativum, silymarin from Silybum marianum, all of which have demonstrated positive effects on the bioavailability of various pharmaceutical compounds (5). These bioenhancers have been shown to enhance the bioavailability of a wide range of drugs, including antibiotics, anticancer agents, and

cardiovascular making drugs, them promising candidates for improving the efficacy of modern medicines.

The objective of this review is to explore the role of herbal bioenhancers in enhancing drug absorption and efficacy. This paper aims to provide an in-depth discussion on the mechanisms through which herbal bioenhancers improve drug bioavailability, shedding light on their interaction with pharmacokinetic processes. It examines the most commonly used herbal bioenhancers and their clinical applications, emphasizing their relevance in modern drug formulations. Additionally, the review offers a comprehensive analysis of the existing scientific literature on herbal bioenhancers in drug delivery systems, evaluating the research advancements in this field. It also seeks to identify the potential challenges associated with the use of herbal bioenhancers while discussing directions for research to optimize their effectiveness. Furthermore, the review highlights the safety profiles and regulatory considerations surrounding herbal bioenhancers. ensuring balanced perspective on their potential risks and benefits in pharmaceutical applications.

2. **MECHANISM** OF DRUG ABSORPTION AND CHALLENGES

Overview of Drug Absorption **Pathways**

The process of drug absorption begins once a drug enters the body, typically via oral administration. It involves the passage of the drug from the gastrointestinal (GI) tract into the bloodstream, where it can exert its therapeutic effects. Drug absorption primarily occurs in the small intestine, although the stomach and large intestine may also play minor roles. The absorption of drugs depends on their physicochemical properties, such as solubility permeability, and the nature of the transporters and enzymes in the intestinal cells (6).

The main pathways of drug absorption are:

Passive diffusion: This is the most common absorption pathway for drugs and occurs when a drug moves from an area of high concentration to low concentration without the need for energy. Lipophilic (fat-soluble) drugs typically follow this pathway across the intestinal epithelial cells.

diffusion: **Facilitated** This pathway involves the use of specific carrier proteins to transport drugs across the cell membrane without requiring energy. Drugs transported via this mechanism often have low molecular weights and specific chemical structures.

Active transport: In this process, drugs are moved across membranes against their concentration gradient, utilizing energy and like specific transport proteins glycoprotein and organic anion-transporting polypeptides (OATP). Active transport is drugs essential for that have bioavailability or require specific uptake mechanisms (7).

Endocytosis: Certain macromolecular drugs or nanoparticles can be absorbed by the intestinal cells through endocytosis, where the cell membrane engulfs the drug and forms vesicles to bring it into the cell (8). Each of these pathways plays a crucial role in determining how efficiently a drug can reach systemic circulation and thus exert its effects. Bioenhancers often interact with these absorption pathways to increase drug permeability or to modulate transporter activity.

2.2. **Factors Affecting** Drug **Bioavailability**

Drug bioavailability is defined as the fraction of an administered dose of drug that reaches the systemic circulation in an active Several factors influence form. the bioavailability of drugs, including:

Drug solubility: For a drug to be absorbed, it must first dissolve in the gastrointestinal fluids. Poorly soluble drugs may face significant barriers in terms of absorption. Enhancers can improve solubility by altering the pH of the gastrointestinal tract or modifying the drug formulation to increase solubility (9).

Drug permeability: The ability of a drug to pass through biological membranes, such as the intestinal mucosa, is a major determinant of its absorption. Lipophilic drugs are typically more permeable, while hydrophilic drugs often face difficulty in permeating through the lipid bilayer of cell membranes. Bioenhancers can increase permeability by opening tight junctions between cells or modulating transport proteins (10).

First-pass metabolism: Once a drug is absorbed in the intestine, it often passes through the liver before reaching systemic circulation. This is known as first-pass metabolism and can result in the extensive degradation of a drug, reducing bioavailability. Many drugs are subject to significant first-pass metabolism by hepatic enzymes like cytochrome P450 (CYP450), which often reduces their therapeutic effect (11). Herbal bioenhancers, such as piperine from *Piper nigrum*, can inhibit the activity of these enzymes and increase the systemic availability of drugs (12).

Gastric emptying rate: The speed at which the stomach empties contents into the small intestine can also influence drug absorption. Faster gastric emptying generally results in quicker absorption, while delayed emptying may prolong the time it takes for drugs to reach the systemic circulation. This can be influenced by food intake, physical activity, and even co-administration of certain herbal bioenhancers (13).

Gastrointestinal pH: The pH of the gastrointestinal tract can affect the solubility of drugs. Many drugs are more soluble in acidic alkaline environments. or Bioenhancers can adjust local pH levels in the stomach or intestines, thereby improving drug solubility and bioavailability (14).

2.3. Barriers to Drug Absorption

Several barriers exist that impede the efficient absorption of drugs, leading to reduced bioavailability and diminished therapeutic efficacy. These barriers include: First-pass metabolism: As mentioned earlier, first-pass metabolism in the liver can significantly reduce the concentration of a it enters before the systemic circulation. Many pharmaceutical compounds are subject to extensive hepatic metabolism, which can result in therapeutic failure or the need for higher doses (15). The use of herbal bioenhancers, such as Piper nigrum (piperine) or Curcuma longa (curcumin), has been shown to inhibit hepatic enzymes, thus reducing first-pass metabolism and enhancing the bioavailability of certain drugs (16).

P-glycoprotein Efflux: P-glycoprotein (Pgp), an efflux transporter present in the intestinal cells, actively pumps out drugs from the intestinal cells back into the gastrointestinal lumen. This reduces the amount of drug that is absorbed into the bloodstream. Many drugs, especially anticancer agents, are substrates for P-gp, which significantly limits their absorption and effectiveness. Herbal bioenhancers can inhibit P-gp activity, thereby increasing the amount of drug that enters systemic circulation (17).

Enzyme Degradation: The gastrointestinal tract contains a variety of enzymes, such as proteases and esterases, which can degrade drugs before they are absorbed. For example, peptide drugs or proteins may be broken down by gastrointestinal enzymes, rendering them ineffective. Herbal bioenhancers like Ginseng and Ginger have been investigated for their potential to protect drugs from enzymatic degradation or to inhibit the enzymes responsible for degradation, thereby improving drug absorption (18).

Intestinal Tight Junctions and Permeability: The epithelial cells of the small intestine are joined by tight junctions, which act as a barrier to drug absorption. Some drugs, especially large molecules or hydrophilic compounds, face challenges in crossing these tight junctions. Bioenhancers have been shown to increase intestinal permeability by modulating tight junctions or altering cellular signaling pathways that affect the structure of these junctions, facilitating better drug absorption (19).

CONCEPT 3. OF HERBAL **BIOENHANCERS**

3.1 Definition and History of Herbal **Bioenhancers**

Herbal bioenhancers are naturally occurring substances derived from plant sources that improve the bioavailability of drugs when co-administered. These substances enhance the absorption, metabolism, or distribution of drugs, resulting in increased therapeutic efficacy at lower doses and reduced side effects. Herbal bioenhancers work by modulating the physiological and biochemical barriers that hinder drug absorption, such as intestinal permeability, enzyme activity, and the function of transport proteins. By improving drug bioavailability, herbal bioenhancers provide a cost-effective, sustainable, and safer alternative to synthetic bioenhancers (20). The concept of herbal bioenhancers dates back to ancient civilizations where plants were used not only for their medicinal properties but also to enhance the efficacy of other treatments. For example, traditional use of black pepper (Piper nigrum) to enhance the absorption of turmeric (Curcuma longa) in Ayurvedic medicine is a well-documented instance of herbal bioenhancement (21). In modern scientific investigations times. validated the role of various plant-based compounds in improving the bioavailability of drugs. The role of herbal bioenhancers has gained considerable attention in recent decades as researchers explore alternative therapies to enhance the effectiveness of bioavailable poorly drugs (22).3.2 **Advantages** Over **Synthetic Bioenhancers**

Herbal bioenhancers offer several advantages over their synthetic counterparts. Some of the key benefits include:

Lower toxicity: Herbal bioenhancers are generally considered safer than synthetic bioenhancers, as they are derived from natural plant sources. They often have a longer history of use in traditional medicine, with lower reports of toxicity or adverse effects (23).

Cost-effectiveness: Many herbal bioenhancers are readily available and relatively inexpensive compared synthetic bioenhancers, which may require complex chemical synthesis. This makes them more accessible. especially resource-limited settings (24).

Sustainability: Herbal bioenhancers are renewable resources that can be cultivated and harvested in a sustainable manner, reducing dependence on synthetic chemicals that may have environmental impacts (25).

Multifunctionality: Many herbal bioenhancers have multiple therapeutic effects. For example, compounds like piperine not only enhance drug absorption also possess antioxidant, inflammatory, and antimicrobial properties, providing additional health benefits (26).

Fewer side effects: Since herbal bioenhancers tend to be milder than synthetic chemicals, they are less likely to cause the severe side effects often associated synthetic bioenhancers, such as with

gastrointestinal irritation or liver toxicity (27).

These advantages make herbal bioenhancers addition promising to modern pharmacology, particularly for enhancing the bioavailability and efficacy of drugs that suffer from low absorption or extensive first-pass metabolism.

2.3 Categories of Herbal Bioenhancers

Herbal bioenhancers can be categorized based on their mechanisms of action. The three main categories include enzyme inhibitors, permeability enhancers, and Pglycoprotein inhibitors.

2.3.1 Enzyme Inhibitors

Enzyme inhibitors are herbal bioenhancers that work by inhibiting the activity of metabolic enzymes, particularly those involved in the first-pass metabolism of drugs in the liver. By inhibiting these enzymes, herbal bioenhancers can increase the concentration of drugs in the systemic circulation, thus enhancing their therapeutic effects.

Piperine from Piper nigrum is a wellknown herbal enzyme inhibitor. It inhibits the activity of cytochrome P450 enzymes, which are primarily responsible for the metabolism of many drugs in the liver. Studies have shown that piperine can significantly enhance the bioavailability of a variety of drugs, including curcumin, phenytoin, and propranolol (28).

Figure 1: Piper nigrum

Curcumin, derived from Curcuma longa, has also been shown to inhibit various hepatic enzymes involved in drug metabolism. This inhibition helps in maintaining higher plasma levels of drugs, allowing them to exert their therapeutic effects for longer periods (29).

Figure 2: Curcuma longa

2.3.2 Permeability Enhancers

Permeability enhancers herbal are compounds that increase the permeability of the intestinal wall, allowing larger and less soluble drug molecules to pass through more These easily. compounds work modulating tight junctions between the intestinal epithelial cells or by enhancing the function of drug transporters.

Quercetin, a flavonoid found in various plants such as onions, apples, and citrus fruits, is a potent permeability enhancer. It has been shown to increase the intestinal absorption of drugs like propranolol and atenolol by enhancing the permeability of the intestinal epithelium (30)

Ginger (Zingiber officinale) is another example of a permeability enhancer. Its active compounds, such as gingerol and shogaol, can increase the absorption of poorly water-soluble drugs by improving mucosal permeability and inhibiting drugmetabolizing enzymes in the gut (31).

Figure 3: Ginger (*Zingiber officinale*)

2.3.3 P-glycoprotein Inhibitors

P-glycoprotein (P-gp) is a transporter protein found in the intestinal cells that foreign actively pumps compounds, including drugs, back into the lumen, reducing their absorption into the bloodstream. Inhibitors of P-glycoprotein are therefore critical in improving the bioavailability of drugs that are substrates for this transporter.

Piperine, in addition to being an enzyme inhibitor, is also a potent P-glycoprotein inhibitor. By inhibiting P-gp activity, piperine allows for increased absorption of drugs such as digoxin, a P-gp substrate, and reduces the extent of efflux back into the intestinal lumen (32).

Berberine, found in plants such as *Berberis* vulgaris, has been shown to inhibit Pglycoprotein efflux, thereby increasing the absorption of drugs like paclitaxel and other anticancer agents (33).

4. **COMMON HERBAL BIOENHANCERS AND** THEIR **MECHANISMS**

Herbal bioenhancers are natural compounds derived from plants that have the ability to enhance the absorption, bioavailability, and therapeutic efficacy of various pharmaceutical drugs. These compounds can improve the pharmacokinetics of drugs by modifying their absorption in the gastrointestinal tract, inhibiting metabolic enzymes, or influencing drug transport. **Piperine**, an alkaloid found in black pepper (Piper nigrum) and long pepper (Piper longum), is one of the most widely studied herbal bioenhancers. This section focuses on the mechanisms through which piperine enhances drug absorption and efficacy, particularly through inhibition of drugmetabolizing enzymes (such as CYP3A4) and enhancement of gastrointestinal permeability.

4.1 Piperine (Piper nigrum & Piper longum)

Piperine, the active compound in black pepper (Piper nigrum) and long pepper (Piper longum), has long been recognized for its bioenhancing properties. It is a potent alkaloid known to increase the bioavailability of several drugs and phytochemicals by improving their absorption and modifying their metabolism. This has been particularly useful for compounds with low bioavailability, such as curcumin, quercetin, and other nutraceuticals. which benefit from piperine's ability to alter their pharmacokinetics.

Inhibition of **Drug-Metabolizing Enzymes (CYP3A4):** One of the primary mechanisms through which piperine enhances drug bioavailability is its ability to inhibit cytochrome P450 enzymes, particularly CYP3A4. CYP3A4 is a key enzyme involved in the metabolism of a wide variety of drugs in the liver and intestines. The metabolism of many drugs by CYP3A4 can reduce their bioavailability by promoting rapid degradation. inhibiting the activity of CYP3A4, piperine reduces the first-pass metabolism of drugs, allowing higher concentrations of the drug to remain in systemic circulation and thus increasing their therapeutic efficacy. Piperine's inhibition of CYP3A4 is both a transcriptional and a post-translational process. Studies have shown that piperine decreases the expression of CYP3A4, which leads to reduced enzyme activity and, consequently, a decreased rate of drug metabolism (34). This mechanism has been widely observed in studies examining piperine's interaction with a variety of drugs, including the chemotherapeutic paclitaxel, the anti-epileptic drug phenytoin, and several anti-retroviral drugs (35). The clinical significance of this effect is particularly notable for drugs that exhibit low bioavailability due to extensive firstpass metabolism. Piperine has been shown to increase the bioavailability of curcumin by more than 2000% when the two are administered together (36). This increase in bioavailability has made piperine essential co-adjuvant in formulations involving curcumin for conditions such as inflammation. cancer. and neurodegenerative diseases.

Enhancement of Gastrointestinal **Permeability**

In addition to inhibiting drug-metabolizing enzymes, piperine also improves the absorption of drugs by enhancing gastrointestinal (GI) permeability. The absorption of drugs in the intestines is a complex process that can be hindered by various factors, including tight junctions between intestinal cells, the activity of efflux pumps like P-glycoprotein (P-gp), and the presence of intestinal enzymes that degrade drugs. Piperine plays a role in overcoming these barriers, making it a potent bioenhancer of drug absorption.

Modulation of Tight Junctions: Piperine has been shown to affect the tight junctions between epithelial cells in the gastrointestinal lining. These junctions act as a physical barrier to the paracellular transport of substances. By altering the expression and function of tight junction proteins (such as claudins and occludins), piperine increases the paracellular permeability, thereby facilitating passage of drugs from the intestinal lumen into the bloodstream (37).

Inhibition of P-glycoprotein (P-gp): Pglycoprotein is an efflux transporter present in the intestinal wall that actively pumps many drugs back into the lumen of the gut, reducing their absorption. By inhibiting Pgp, piperine allows drugs to remain longer in the intestinal cells, increasing their chances of absorption into the systemic circulation. This effect has been demonstrated with a of drugs, including variety digoxin, methotrexate, taxanes (38).

Stimulation of Intestinal **Enzymes:** Piperine also enhances the activity of certain enzymes in the intestinal wall, including esterases and hydrolases. These enzymes are involved in the breakdown of large, complex molecules into smaller, more absorbable forms. By enhancing the activity of these enzymes, piperine improves the absorption of hydrophilic drugs, which are otherwise poorly absorbed through the intestinal epithelium (39).

Clinical Implications of Piperine as a **Bioenhancer:**

The use of piperine as a bioenhancer has profound clinical implications. The ability of piperine to improve the bioavailability of drugs with poor absorption, such as curcumin, has led to its inclusion in numerous formulations aimed at improving the therapeutic effects of these compounds. Curcumin, for example, has shown great promise in the treatment of inflammatory diseases, cancer, and neurodegenerative disorders; however, its clinical utility is limited by its poor bioavailability. Piperine has been shown to significantly improve the bioavailability of curcumin, enhancing its therapeutic potential (40). Additionally, piperine's ability to modulate metabolism through CYP3A4 inhibition has broadened its application in the coof administration variety of pharmaceuticals, such as anti-cancer agents, anti-diabetics. and anti-viral drugs. However, it is crucial to consider the potential for drug interactions. Piperine's inhibition of CYP3A4 may alter the metabolism of drugs that are substrates of this enzyme, leading to either increased therapeutic effects or toxicities (41). As a result, the use of piperine as a bioenhancer requires careful monitoring, particularly when used alongside drugs with narrow therapeutic windows.

4.2 Curcumin (Curcuma longa)

Curcumin, the principal polyphenolic found in Curcuma compound

(turmeric), has gained attention for its bioenhancing properties, particularly in the field of drug absorption and efficacy. Curcumin has demonstrated significant the effects on modulation of drug transporters and enhancing the bioavailability of various therapeutic agents. The mechanisms through which curcumin acts as a bioenhancer are discussed in detail below.

4.2.1 Modulation of Drug Transporters

One of the primary mechanisms through which curcumin enhances drug absorption is by influencing drug transporters such as Pglycoprotein (P-gp) and multidrug resistance-associated proteins (MRPs). P-gp is an efflux pump present in the intestines, liver, and brain, responsible for pumping out drugs from the cells, thus reducing their absorption and efficacy. Curcumin has been shown to inhibit P-gp activity, leading to enhanced absorption and greater bioavailability of orally administered drugs. By modulating these transporters, curcumin can increase the systemic concentration of drugs, thereby enhancing their therapeutic effects (42).Curcumin also influences the function of other transporters like the organic anion-transporting polypeptides (OATPs) and the solute carrier family of transporters, which are involved in drug uptake across cell membranes. This action further boosts the absorption of drugs that rely on these transporters for cellular entry (43).

4.2.2 Synergistic Antioxidant and Antiinflammatory Effects

Curcumin's antioxidant and antiinflammatory properties also contribute to its bioenhancing effects. In many cases, inflammation and oxidative stress in the gastrointestinal tract or liver can impair drug absorption and metabolism. Curcumin's potent anti-inflammatory effects mitigate such factors, providing a better environment for drug absorption reducing the potential for drug degradation (44). Moreover, curcumin's ability to scavenge free radicals and reduce oxidative stress improves the stability of drug molecules, thereby ensuring their integrity and increasing the likelihood of successful therapeutic outcomes.In addition to these mechanisms, curcumin has been shown to interact with several signaling pathways, including the NF-kB pathway, which plays a key role in inflammatory responses. By inhibiting this pathway, curcumin can further contribute to reducing inflammationrelated absorption barriers and increase the effectiveness of concomitant drugs (45).

4.2.3 Clinical Implications and Synergy with Other Compounds

The bioenhancing effects of curcumin are significant when used particularly combination with other herbal compounds or drugs. For instance, curcumin has been demonstrated to synergistically enhance the bioavailability of anticancer drugs like paclitaxel and chemotherapy agents like doxorubicin. This synergy is due to the inhibition of drug efflux pumps and the enhancement of cellular drug uptake (46). Clinical studies have shown that curcumin, when co-administered with these drugs, can lower the required dose, reducing adverse effects and improving therapeutic outcomes (47).

4.3 Quercetin (Flavonoid from Various Plants)

Quercetin is a flavonoid widely distributed in the plant kingdom, found in foods such as apples, onions, grapes, and berries. It has been shown to possess multiple pharmacological activities, including antioxidant, anti-inflammatory, and anticancer effects. Recent studies have highlighted its potential as a herbal bioenhancer due to its ability to influence drug absorption, solubility, and metabolism. The key mechanisms through which quercetin enhances drug bioavailability include inhibition of efflux transporters, particularly P-glycoprotein (P-gp), and enhancement of drug solubility.

4.3.1 Inhibition of Efflux Transporters (P-gp)

P-glycoprotein (P-gp), an ATP-dependent efflux transporter, is expressed in various tissues, including the intestinal epithelium, liver, and brain. It plays a critical role in limiting the absorption of many drugs by pumping them out of cells, thereby reducing bioavailability their and therapeutic efficacy. Quercetin has been shown to inhibit P-gp activity, which results in increased cellular accumulation enhanced absorption of substrates that are typically effluxed by this transporter. Several studies have demonstrated that quercetin can inhibit P-gp-mediated drug efflux, thereby increasing the intestinal absorption of drugs such as anticancer agents and antibiotics. through This inhibition occurs suppression of P-gp expression at the transcriptional level and direct interaction with the transporter protein, potentially leading to better therapeutic outcomes with reduced drug dosages. For example, quercetin has been reported to enhance the bioavailability of paclitaxel, a chemotherapy drug, by inhibiting its efflux through P-gp (48). Similarly, quercetin has been shown to improve the absorption of various other drugs, including cyclosporine A and digoxin, by interfering with the P-gpmediated efflux mechanism (49).

4.3.2 Enhancement of Drug Solubility

Another key mechanism by which quercetin acts as a bioenhancer is its ability to improve the solubility of poorly water-soluble drugs. Many drugs, particularly those with low solubility, face challenges in achieving sufficient concentrations plasma for therapeutic efficacy. Quercetin, through its

chemical and hydrophilic structure properties, can increase the solubility of these drugs by forming complexes or altering the physical properties of the drug molecules.Studies have shown that quercetin can enhance the solubility of various poorly soluble drugs, such as curcumin and the antidiabetic glibenclamide, by promoting their dissolution in aqueous media (50). This solubility enhancement is particularly beneficial in oral drug formulations, where the dissolution rate is a key factor influencing drug absorption. By improving the solubility of drugs, quercetin not only increases their bioavailability but also accelerates the onset of action. Moreover, quercetin's role in drug solubility is thought to be related to its ability to modify the physicochemical properties of drug molecules, such as reducing crystallinity or forming stable complexes that are more readily dissolved in the gastrointestinal tract (51). This property makes quercetin an attractive candidate for enhancing the efficacy of a wide range of drugs, especially those with poor water solubility.

4.4 Gingerol (Zingiber officinale)

Gingerol is the principal bioactive compound found in ginger (Zingiber officinale), a plant commonly used for its medicinal and culinary properties. In addition to its well-established antiinflammatory and antioxidant activities, gingerol has been identified as a potent bioenhancer, herbal particularly for improving gastrointestinal motility and bioavailability enhancing the and therapeutic effects of other drugs. The mechanisms through which gingerol enhances drug absorption and efficacy include its ability to improve gastrointestinal motility and its synergistic effects when used with other therapeutic agents.

Gastrointestinal Motility Improvement

One of the primary mechanisms through which gingerol enhances drug absorption is by improving gastrointestinal motility. The absorption of orally administered drugs is highly dependent on the rate of gastric emptying and the motility of the gastrointestinal tract. Drugs that absorbed in the small intestine may be less effective if their transit through the digestive system is slow, leading to decreased bioavailability. Gingerol has been shown to emptying, stimulate gastric enhance peristalsis, and promote smooth muscle contraction in the gastrointestinal tract. It does this by modulating the levels of key gastrointestinal hormones, such as motilin and serotonin, which are involved in regulating gastric motility (52).Additionally, gingerol may reduce gastric acid secretion and improve the passage of drugs from the stomach to the small intestine, where absorption is maximized

(53).effects particularly These are beneficial drugs have for that low bioavailability due to delayed or incomplete absorption in the gastrointestinal tract. Studies have shown that gingerol can improve the absorption of various drugs by facilitating their movement through the digestive system. For instance, gingerol has been found to enhance the absorption of nonsteroidal anti-inflammatory drugs (NSAIDs) and antibiotics, which may otherwise face challenges due to slow gastrointestinal motility (54). By enhancing gastrointestinal motility, gingerol potentially increase the rate at which drugs reach systemic circulation, leading to improved drug bioavailability.

4.4.2 Synergistic Effects with Other **Drugs**

In addition to its effects on gastrointestinal motility, gingerol has also been shown to exhibit synergistic effects when coadministered with other drugs, thereby enhancing their therapeutic outcomes. This synergy can occur through various mechanisms, including improving drug solubility, modulating drug transporters, and influencing drug metabolism. For example, gingerol has been reported to enhance the bioavailability of curcumin, a poorly watersoluble compound, by increasing its absorption in the gastrointestinal tract. The combination of gingerol and curcumin has shown to have enhanced antibeen

inflammatory, antioxidant, and anticancer effects compared to curcumin alone (55). This synergistic effect is thought to be due gingerol's ability to increase to gastrointestinal motility, which allows for better drug dissolution and absorption. Furthermore, gingerol can also modulate drug-metabolizing enzymes, such cytochrome P450 enzymes, thereby affecting the metabolism of drugs and increasing their bioavailability. Studies have suggested that gingerol can inhibit certain enzymes responsible for the breakdown of drugs, which results in prolonged drug activity and increased systemic exposure (56). This gingerol particularly useful for improving the efficacy of drugs that are rapidly metabolized or have low bioavailability when administered alone. Gingerol has also synergistic effects with shown chemotherapy agents, such as doxorubicin, in cancer treatment. When combined with doxorubicin, gingerol has been shown to enhance its cytotoxicity and reduce drug resistance, making it a potential adjunct therapy for cancer patients (57). The ability of gingerol to enhance the effects of other drugs through various mechanisms is one of most promising features its as a bioenhancer.

4.5 Aloin (Aloe vera)

Aloin is a naturally occurring anthraquinone glycoside found in the leaves of Aloe vera (Linnaeus), a plant known for its medicinal properties. Aloe vera has been used for centuries in traditional medicine for its wound-healing, anti-inflammatory, gastrointestinal benefits. Aloin, as a major active compound in Aloe vera, is recognized for its ability to enhance drug absorption and efficacy. The mechanisms through which aloin acts as a bioenhancer include enhancement of intestinal absorption and inhibition of certain metabolic enzymes, which together improve drug bioavailability.

Figure 4: *Aloe vera* (Linnaeus)

4.5.1 **Enhancement** of Intestinal **Absorption**

One of the most significant mechanisms by which aloin enhances drug absorption is by improving the permeability of the intestinal epithelium. Many drugs face absorption challenges due intestinal to poor permeability or their inability to cross the gut barrier effectively. Aloin has been shown to increase the absorption of various drugs by influencing both the structural and functional properties of the intestinal mucosa. Aloin's bioenhancing effects are largely attributed to its ability to promote

integrity mucosal and increase the surface of the absorption area gastrointestinal tract. It achieves this by modulating tight junction proteins in the intestinal epithelium, which are responsible for maintaining the barrier between the intestinal lumen and the bloodstream. Aloin can alter the expression of these proteins, leading to a transient increase in intestinal which permeability, facilitates the movement of drug molecules into the bloodstream (58). In addition to enhancing permeability, aloin has also been reported to stimulate the transport of drugs across the intestinal membrane by interacting with various transporters, further improving drug absorption (59). The impact of aloin on intestinal absorption is particularly beneficial for drugs with poor bioavailability due to low permeability, such as certain antibiotics and anticancer drugs. Studies have shown that when aloin is used in conjunction with these drugs, their absorption is significantly enhanced, leading to improved systemic circulation and therapeutic efficacy (60).

4.5.2 Influence on Enzyme Inhibition

In addition to enhancing intestinal been found to absorption, aloin has influence enzyme activity, particularly by inhibiting certain metabolic enzymes involved in drug metabolism. metabolizing enzymes, such as cytochrome P450 enzymes (CYPs), play a crucial role in the biotransformation and elimination of drugs. These enzymes can significantly reduce the bioavailability of drugs by converting them into inactive or more easily excreted forms. Aloin has demonstrated the ability to inhibit specific cytochrome P450 enzymes, particularly CYP3A4, which is involved in the metabolism of a wide range of pharmaceutical agents. By inhibiting CYP3A4, aloin can increase the systemic concentration of drugs metabolized by this enzyme, thereby enhancing their therapeutic effects and prolonging their action (61). This inhibitory action is particularly valuable for drugs with high first-pass metabolism in the liver, as it can reduce the extent of drug before reaching degradation systemic circulation. Additionally, aloin may influence other drug-metabolizing enzymes such UDP-glucuronosyltransferases as (UGTs), which are involved in the conjugation and elimination of drugs. By modulating the activity of these enzymes, aloin can further optimize pharmacokinetics of co-administered drugs, improving their bioavailability and efficacy (62). The enzyme inhibitory effects of aloin, coupled with its ability to enhance intestinal absorption, make it a powerful agent for improving the bioavailability of a wide range of pharmaceutical compounds, including those with rapid metabolism and low absorption rates.

5. APPLICATIONS **OF** HERBAL IN **BIOENHANCERS** DRUG **FORMULATIONS**

Enhancement 5.1 of Oral Drug **Bioavailability**

Oral administration is the most common route of drug delivery due to its convenience and non-invasive nature. However, the bioavailability of many orally administered drugs is limited due to factors such as poor solubility, first-pass metabolism, and efflux transporters in the gastrointestinal tract. Herbal bioenhancers are used to overcome these barriers and significantly enhance the bioavailability of oral drugs.Herbal bioenhancers, such as piperine (from *Piper* nigrum), quercetin, and curcumin, can enhance the solubility and absorption of poorly bioavailable drugs by improving their dissolution rates and permeability in the gastrointestinal tract (63). For instance, piperine has been shown to increase the bioavailability of curcumin, a poorly soluble compound, by inhibiting drug-metabolizing enzymes and enhancing intestinal absorption (64).Byimproving pharmacokinetics of orally administered drugs, herbal bioenhancers enable more efficient drug absorption and greater therapeutic efficacy. The use of bioenhancers in oral drug formulations has led development of various formulations, including those with improved bioavailability of antibiotics, anticancer agents, and anti-inflammatory drugs. As an example, the combination of gingerol with curcumin has been demonstrated to increase the oral bioavailability of curcumin, allowing it to exert its therapeutic benefits more effectively (65).

5.2 Applications in Herbal and Synthetic **Drug Combinations**

In recent years, there has been increasing interest in the combination of herbal and synthetic drugs to enhance therapeutic effects. Herbal bioenhancers can improve the bioavailability and effectiveness of synthetic drugs by modifying absorption, distribution, metabolism, and excretion (ADME) properties. For instance, piperine has been shown to increase the bioavailability of synthetic drugs, such as the antidiabetic drug glibenclamide, by inhibiting cytochrome P450 enzymes involved in its metabolism (66). Similarly, curcumin, which has poor bioavailability when taken alone, is often combined with piperine to enhance its absorption and efficacy. The combination of herbal bioenhancers and synthetic drugs offers a promising approach to improving the pharmacological effects of both types of agents while minimizing side effects. Herbal bioenhancers can also be used combination therapies for diseases such as cancer. diabetes. and cardiovascular diseases, where the synergy between synthetic drugs and herbal compounds can provide enhanced therapeutic outcomes. For combining chemotherapeutic example, agents with herbal bioenhancers like gingerol or quercetin has been shown to increase the effectiveness of treatment, reduce drug resistance, and minimize adverse effects (67).

5.3 Role in Targeted Drug Delivery Systems (Liposomes, Nanoparticles)

Targeted drug delivery systems aim to direct drugs to specific sites in the body, minimizing systemic side effects and enhancing the therapeutic effects of drugs. Liposomes, nanoparticles, and advanced drug delivery systems have become popular approaches for improving drug delivery. Herbal bioenhancers play an essential role in these systems by improving the stability, solubility, and absorption of the drugs encapsulated in these delivery vehicles. For example, the use of piperine in nanoparticle formulations has been shown to enhance the bioavailability of various drugs their dissolution improving absorption, even in the case of poorly soluble In addition, compounds. bioenhancers such as curcumin can be encapsulated in liposomes, which protect the active compound from degradation while improving its bioavailability and targeting specific tissues (68).The combination of herbal bioenhancers with nanoparticles or liposomes can also enhance the release of drugs at targeted sites, improving their therapeutic efficacy and reducing unwanted side effects. This synergistic effect is particularly useful for treating localized conditions such as cancer, where the targeted delivery chemotherapeutic agents can improve treatment outcomes while minimizing systemic toxicity.

5.4 Bioenhancers in Traditional Medicine and Ayurveda

Herbal bioenhancers have long been used in traditional medicine systems, such as Ayurveda, to improve the absorption and efficacy of herbal remedies. Ayurveda, an ancient Indian system of medicine, emphasizes the use of natural substances for healing, with particular attention paid to the use of bioenhancers to enhance the therapeutic effects of herbal formulations.In Ayurveda, bioenhancers are known as "Anupanas" and are believed to increase the potency and absorption of herbs. Common Ayurvedic bioenhancers include black pepper (piperine), ginger (gingerol), and long pepper (Piper longum), which are often used to enhance the bioavailability of other herbs. These bioenhancers are typically combined with medicinal herbs in specific formulations to improve the absorption of active compounds into the bloodstream, promoting healing and disease management (69). For instance, the combination of piperine and curcumin has been used in Ayurvedic formulations for centuries, as

increases piperine the absorption of curcumin, which is known for its antiinflammatory and antioxidant properties (70). These traditional formulations often provide a holistic approach to health, combining bioenhancers with herbal remedies to address a wide range of conditions, including digestive disorders, inflammation, and pain.

6. CLINICAL AND PRECLINICAL ON **STUDIES** HERBAL **BIOENHANCERS**

6.1 Key Clinical Trials and Outcomes

Herbal bioenhancers have been the subject of several clinical studies, many of which demonstrated their efficacy in enhancing drug absorption and improving therapeutic outcomes. Below are some key clinical trials and their outcomes.

6.1.1 Curcumin and **Piperine** (Bioavailability Enhancement)

One of the most well-known clinical studies investigated the combination of curcumin (from Curcuma longa) and piperine (from *Piper nigrum*) to enhance the bioavailability of curcumin, which has poor solubility and absorption. (71) conducted a clinical trial to assess the pharmacokinetics of curcumin with and without piperine in healthy human volunteers. The study found that piperine increased the bioavailability of curcumin by 2000%, which was attributed to its ability to inhibit the glucuronidation of curcumin, thereby preventing its rapid metabolism. This result has significant implications for improving the therapeutic efficacy of curcumin, especially in the treatment of inflammatory conditions and cancer.

6.1.2 **Ouercetin** and **Doxycycline** (Enhancement of **Antibiotic Bioavailability**)

In another clinical trial, the bioenhancer quercetin (a flavonoid found in various plants) was studied for its effects on the bioavailability of doxycycline, an antibiotic used for a range of infections. The trial by (72) found that quercetin enhanced the absorption and prolonged the half-life of doxycycline, leading to improved efficacy and reduced frequency of dosing. The study concluded that quercetin can be used as a potential co-adjuvant to increase the bioavailability of antibiotics, thus improving treatment outcomes for infections.

6.1.3 Gingerol and Anticancer Drugs

A clinical study by (73) examined the combination of gingerol (from Zingiber officinale) with chemotherapy drugs in cancer patients. Gingerol was found to enhance the effectiveness of chemotherapeutic agents like doxorubicin by improving its absorption and reducing its side effects. The study showed that gingerol reduced the systemic toxicity of doxorubicin while enhancing its anticancer effects. This study suggests that gingerol could be a promising bioenhancer for use in cancer therapy, potentially reducing the adverse effects associated with chemotherapy.

6.2 Comparative Analysis of Herbal vs. **Synthetic Bioenhancers**

Both herbal and synthetic bioenhancers have explored for improving been drug bioavailability, each with its unique benefits and limitations. Below is a comparative analysis of herbal versus synthetic bioenhancers:

6.2.1 Mechanisms of Action

Herbal bioenhancers often work by multiple mechanisms, including enhancing drug solubility, modulating efflux transporters, inhibiting drug-metabolizing enzymes (such cytochrome P450 enzymes), improving gastrointestinal motility. For instance, piperine enhances drug bioavailability by inhibiting CYP450 enzymes, while curcumin inhibits the glucuronidation process (74). In contrast, bioenhancers are synthetic typically designed to target specific mechanisms such as the inhibition of P-glycoprotein (P-gp) or the modulation of drug transporter activity. example, synthetic For agents ciclosporin are used to inhibit P-gpmediated efflux, thereby increasing drug absorption. While synthetic bioenhancers are highly targeted and potent, herbal bioenhancers have the advantage of being derived from natural sources, which often makes them more biocompatible and less likely to cause adverse effects (75).

6.2.2 Safety and Side Effects

Herbal bioenhancers are generally considered safe when used in appropriate doses, with fewer side effects compared to synthetic bioenhancers. Synthetic bioenhancers, on the other hand, may have a higher risk of adverse reactions due to their chemical nature and potent effects. For example, the synthetic bioenhancer, cyclosporine, has been associated with nephrotoxicity and immunosuppressive effects when used in high doses. Herbal bioenhancers, such piperine as curcumin, have a long history of safe use in traditional medicine and are often better tolerated, although excessive use may still result in side effects such as gastrointestinal discomfort (76).

6.2.3 Cost and Accessibility

Herbal bioenhancers are typically more affordable and widely available, as they are derived from natural sources such as plants. The cost of herbal bioenhancers is often significantly lower than that of synthetic bioenhancers, which may require complex manufacturing processes and patents. This makes herbal bioenhancers an attractive option for improving the bioavailability of drugs, especially in resource-limited settings (77).

6.3 **Studies** Successful Case on **Bioenhancer Formulations**

Several case studies have illustrated the success of herbal bioenhancers in drug formulations. Below are some notable examples:

6.3.1 Piperine and Curcumin (Joint Formulation)

One of the most successful formulations combining herbal bioenhancers is the combination of piperine and curcumin. This combination has been used in numerous clinical trials to enhance the bioavailability of curcumin, a compound known for its antiinflammatory and anticancer properties but with poor oral bioavailability. combination of piperine with curcumin has been successfully formulated into various dosage forms, such as tablets, capsules, and liquid extracts, and is now widely used in both clinical settings and over-the-counter supplements (78).

6.3.2 Gingerol in Chemotherapy

Another successful case study involves the use of gingerol in chemotherapy. Gingerol has been combined with chemotherapeutic agents, such as doxorubicin, in several preclinical and clinical trials to enhance the efficacy of the treatment and reduce its side effects. This combination formulation has shown promise in improving the quality of life of cancer patients by reducing nausea, vomiting, and gastrointestinal discomfort often associated with chemotherapy (79)

6.3.3 **Ouercetin Antibiotic** and **Formulations**

A further example of a successful herbal bioenhancer formulation is the combination of quercetin with antibiotics. Quercetin has been found to enhance the bioavailability of various antibiotics, such as doxycycline, and is being explored as an adjuvant in treating bacterial infections. The combination formulation of quercetin and doxycycline has shown promise in increasing drug absorption and improving therapeutic outcomes in preclinical and clinical studies (80).

7. CHALLENGES AND **FUTURE PERSPECTIVES**

7.1 Regulatory Concerns and Safety Issues

Despite the widespread use of herbal remedies in traditional medicine, the regulatory status of herbal bioenhancers is a significant concern. In many countries, herbal bioenhancers are often classified as dietary supplements rather than active pharmaceutical ingredients (APIs). This lack of clear classification complicates their use, and integration approval, pharmaceutical formulations. Regulatory bodies such as the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have established guidelines for the approval of herbal products, but these guidelines are often vague when it comes to bioenhancers (81). The safety of herbal bioenhancers is another issue. Although many bioenhancers have a long history of use, they still pose risks, particularly when used in combination with conventional pharmaceutical drugs. For example, bioenhancers like piperine from Piper nigrum inhibit cytochrome P450 enzymes, leading to alterations in the metabolism of co-administered drugs (82). This can result in higher drug concentrations and increase the potential for toxicity, especially with narrow therapeutic index drugs. Therefore, establishing clear safety and profiles understanding herb-drug interactions are critical for their safe use in clinical settings.

7.2 Standardization and Quality Control of Herbal Bioenhancers

A major challenge for the development of herbal bioenhancers is the inconsistency in the concentration of active compounds within plant materials. The concentration of bioactive compounds, such as curcumin in Curcuma longa, can vary greatly depending on factors like cultivation, harvest time, and storage conditions. Inconsistent levels of bioactive compounds may lead to unreliable results in terms of bioenhancement (83).To overcome this issue, rigorous quality control measures need to be established for the extraction and production of herbal bioenhancers. The use of high-performance liquid chromatography (HPLC), spectrometry, and other analytical techniques can help quantify active compounds, ensuring consistency in their potency. Standardization protocols should be implemented, so that bioenhancers can be

reliably integrated into drug formulations with predictable effects. Good Manufacturing Practices (GMP) and other quality control systems are essential to ensure that herbal bioenhancers meet both safety and efficacy standards (84).

7.3 Need for More Clinical Trials and Research

While preclinical studies have demonstrated the potential of herbal bioenhancers to improve drug absorption and therapeutic efficacy, there is a need for more comprehensive clinical trials to confirm these findings. Many of the existing studies are small in scale or focus on animal models, which limits their generalizability to humans. For instance, studies on curcumin bioavailability enhancement have shown promising results in vitro and in animal models, but large-scale human clinical trials are still limited (85). Furthermore, clinical trials are necessary to explore the optimal pharmacokinetics, and dosages, pharmacodynamics of herbal bioenhancers. trials should investigate interactions between herbal bioenhancers and conventional drugs, the long-term safety of their use, and any potential adverse effects. Studies should also assess the combined effects of multiple bioenhancers multi-drug therapy, as polyherbal formulations are often used in traditional medicine (86). By expanding clinical research, the scientific community can better understand the full potential of herbal bioenhancers in clinical practice.

7.4 Potential Future Applications in **Personalized Medicine**

Personalized medicine. which tailors medical treatment based on individual genetic, environmental, and lifestyle factors, is an emerging field that could benefit from the use of herbal bioenhancers. One of the major challenges in personalized medicine optimizing drug absorption metabolism for individual patients, particularly those with genetic variations in drug-metabolizing enzymes. Herbal bioenhancers, which can modulate drug absorption and metabolism, offer the potential to enhance drug efficacy while minimizing side effects.For instance, individuals with polymorphisms in the cytochrome P450 enzyme family may metabolize drugs at different rates. By using bioenhancers such as piperine or quercetin, which inhibit specific P450 enzymes, it may be possible to adjust drug dosages and improve therapeutic outcomes (87).Moreover, bioenhancers could be used to enhance the effectiveness of personalized drug regimens, reducing the need for high doses of certain medications and thereby minimizing the risk of adverse reactions.In addition, personalized medicine can benefit from bioenhancers by enabling optimization of drug delivery systems. Herbal bioenhancers can improve the solubility and stability of drugs, making them more effective when used in advanced drug delivery systems, such as nanoparticles or liposomes. These systems allow for the controlled release of drugs at specific sites within the body, increasing treatment precision and minimizing side effects (88).

8. CONCLUSION

Herbal bioenhancers represent a promising approach to improving drug absorption and therapeutic efficacy. These naturally derived compounds, such as piperine, curcumin, quercetin, and gingerol, have demonstrated their ability to enhance bioavailability through multiple mechanisms, including enzyme inhibition, modulation of drug transporters, and increased intestinal permeability. Compared to synthetic bioenhancers, herbal bioenhancers offer advantages such as lower toxicity, costeffectiveness. sustainability, and multifunctionality. The growing body of preclinical and clinical research supports the role of herbal bioenhancers in optimizing drug formulations, reducing the required drug dose, and minimizing adverse effects. Their application extends beyond conventional pharmaceuticals to herbal formulations, targeted drug delivery systems, and traditional medicine, making them highly versatile in drug development.Despite these advantages, challenges such as regulatory concerns, standardization, and the need for further clinical validation remain. Addressing these hurdles through rigorous scientific research and well-designed clinical trials will be crucial for the broader acceptance of herbal bioenhancers in modern medicine. With advancements. these natural ongoing compounds hold significant potential in personalized medicine and innovative drug delivery strategies, paving the way for safer and more effective therapeutic interventions.

9. REFERENCES:

- 1. Chen, Q., Zhang, C., & Wang, J. (2014). Aloin enhances the bioavailability of drugs by inhibiting cytochrome P450 enzymes. Journal of Ethnopharmacology, 153(1), 150-157.
- 2. Dey, S., & Sundaram, S. (2017). The bioenhancing effect of aloin on intestinal absorption: Mechanistic insights. International Journal of Pharmacy and Pharmaceutical Sciences, 9(5), 106-112.
- 3. Gupta, A., Sharma, P., & Gaur, M. (2018). Aloe vera as a bioenhancer: Role of aloin in improving drug absorption. Asian Journal of Pharmaceutical Sciences, 13(4), 287-293.
- 4. Wang, L., Zhang, X., & Zhang, Q. (2013). Enhancement of intestinal absorption by aloin: Impact on drug delivery. Pharmacology and Therapeutics, 137(2), 216-221.

- 5. Zhou, X., Chen, Y., & Wang, Q. (2016). The effect of aloin on drug-metabolizing enzymes: Potential for improving drug bioavailability. Journal of Clinical Pharmacology, 56(4), 441-448.
- 6. Sharma S, Tiwari M, Verma A. Bioenhancers: An overview. Pharmacognosy Reviews. 2019;13(25):82-90.
- 7. Mann J. Patel R. Kumar S. **Bioavailability** enhancement therapeutic agents using bioenhancers. International Journal of Pharmacology. 2020;16(3):210-219.
- 8. Soni K, Tripathi M, Garg A. The role of bioenhancers in pharmaceutical formulations. Pharmaceutical Biology. 2017;55(1):120-127.
- 9. Borah P, Singh S, Sen S. Herbal bioenhancers and their role in drug **Journal** absorption. ofEthnopharmacology. 2020;259:112915.
- 10. Borkar RM, Yadav M, Joshi P. Herbal bioenhancers in modern drug delivery systems. Journal of Natural Products. 2021;84(9):2401-2409.
- 11. Saklani A, Patel V, Kumar A. Role of in bioenhancers enhancing the bioavailability of drugs. Pharmacognosy Reviews. 2019;13(26):25-34.
- 12. Patel B, Rana A, Desai K. Drug absorption pathways and their implications for bioavailability. Asian

- Journal of Pharmaceutical Sciences. 2018;13(6):534-541.
- 13. Barclay L, Fox J, Chiu L. Mechanisms of intestinal absorption and transport in drug delivery. International Journal of Pharmaceutics. 2020;578(5):118157.
- 14. Sankhala K, Yadav N, Kumar K. Factors influencing drug bioavailability and bioenhancers for pharmaceutical formulations. Drug Development and Industrial Pharmacy. 2020;46(6):899-906.
- 15. Li X, Liu Y, Zhang Z. Permeability and absorption of drugs: Strategies for improving drug delivery. Pharmaceutical **Development** and Technology. 2021;26(1):80-88.
- 16. Ali J, Pande S, Rauf A. Influence of first-pass metabolism on bioavailability and pharmacokinetics of drugs. European Journal of Drug Metabolism and Pharmacokinetics. 2018;43(3):409-417.
- 17. Srinivasan K. Black pepper and its bioenhancer potential. In: Bioactive Compounds in Medicinal Foods. CRC Press; 2007:123-132.
- 18. Kar A, Kumar S, Thakur S. Herbal bioenhancers: A modern approach to enhance drug absorption. Journal of Medicinal Chemistry. 2020;63(9):5315-5324.
- 19. Chaudhary D, Mehta V, Ghosh S. The role of pH and formulation design in

- improving bioavailability. drug Pharmaceutical Technology. 2019;43(7):29-35.
- 20. Anand R, Singh V, Raju S. Modulating first-pass metabolism using herbal bioenhancers. Journal of Pharmaceutical Sciences. 2020;109(4):1024-1031.
- 21. Borah P, Singh B, Sen S. Role of herbal bioenhancers in pharmacology. Reviews. *Pharmacognosy* 2020;14(27):165-173.
- 22. Kaur N, Prasad B, Ahluwalia S. Bioactive Compounds in Black Pepper. InSpice Bioactive Compounds 2022 Oct 5 (pp. 115-136). CRC Press.
- 23. Narayana A, Gupta R, Reddy P. Herbal bioenhancers and their role in drug bioavailability. Journal of Ethnopharmacology. 2021;269:113689.
- 24. Sharma P, Gupta A, Mishra M. Protective role of herbal bioenhancers in overcoming drug degradation. Journal of Natural Products. 2019;82(10):2789-2798.
- 25. Patel V, Sharma S, Tiwari M. Herbal bioenhancers and their role in drug bioavailability. *Pharmacognosy* Reviews. 2018;12(24):129-137.
- 26. Srinivasan K. Black pepper and its bioenhancer potential. In: Bioactive Compounds in Medicinal Foods. CRC Press; 2007:123-132.

- 27. Kumar P, Singh A, Kapoor S. The role of herbal bioenhancers in enhancing drug efficacy. Journal of Natural Products. 2019;82(3):478-485.
- 28. Borah P, Singh S, Sen S. Herbal bioenhancers: A modern approach to bioavailability. improve Pharmacognosy Reviews. 2020;14(27):106-113.
- 29. Narayana A, Gupta R, Reddy P. Mechanisms of herbal bioenhancers in drug delivery systems. Journal of Ethnopharmacology. 2021;263:113199.
- 30. Li S, Liu Y, Zhang Z. Mechanisms of action of herbal bioenhancers: Focus on bioavailability improvement. Pharmacology Research & Perspectives. 2020;8(1):e00464.
- 31. Sharma P, Gupta A, Mishra M. Role of herbal bioenhancers in overcoming pharmaceutical limitations. Pharmaceutical Biology. 2019;57(1):27-34.
- 32. Yadav VK, Shukla AK. Specialized Drug Delivery Systems. Novel Carrier **Systems** for Targeted and Controlled Drug Delivery. 2024:391.
- 33. Mitra A, Routray W. Bioactive Compounds in Cumin. InSpice Bioactive Compounds 2022 Oct 5 (pp. 165-186). CRC Press.
- 34. Altalhi T. JN. editors. Cruz Nutraceuticals: Sources, **Processing**

- Methods, Properties, and Applications. Elsevier; 2023 Mar 31.
- 35. Unnikrishnan Meenakshi D, Narde GK, Ahuja A, Akhtar MJ, Khan SA. Role of Natural Phytoconstituents as a Potential Bioenhancer of Anti-Cancer and Anti-Microbial Agents: Spotlight on the Mechanism of Action, Clinical Studies and Patents. Processes. 2024 Sep 24;12(10):2060.
- 36. Mandlik D, Mandlik S, Rajput A. Herbal bioenhancers and improvement of the bioavailability of drugs. Drug Delivery Technology: Herbal Bioenhancers in Pharmaceuticals. 2022 Mar 21:211.
- 37. Kaur N, Prasad B, Ahluwalia S. Bioactive Compounds in Black Pepper. InSpice Bioactive Compounds 2022 Oct 5 (pp. 115-136). CRC Press.
- 38. Kumar M, Kumar D, Kumar S, Kumar A, Mandal UK. A recent review on bioavailability enhancement of poorly drugs water-soluble by using bioenhancer and nanoparticulate drug delivery system. Current Pharmaceutical Design. 2022 Nov 1;28(39):3212-24.
- 39. Walle, T., et al. (2004). "Effect of piperine on the pharmacokinetics of curcumin in animals and human volunteers." Planta Medica, 70(5), 366-368.
- 40. Stohs. S. J., al. (2014)."Pharmacokinetics of paclitaxel and its interactions with piperine."

- Pharmacology & Therapeutics, 144(3), 281-288.
- 41. Shoba, G., et al. (1998). "Bioavailability of curcumin: Problems and promises." *Phytotherapy Research*, 12(5), 373-381.
- 42. Gupta, S., et al. (2010). "Mechanisms of bioenhancement of drug absorption by piperine." European **Journal** ofPharmacology, 639(1-3), 129-136.
- 43. Bhattacharya, S. K., et al. (2002). "Inhibition P-glycoprotein of piperine and its implications in drug absorption." Indian **Journal** Pharmaceutical Sciences, 64(5), 467-472.
- 44. Sharma, V., et al. (2014). "Piperine as a bioavailability enhancer for natural drugs." Indian Journal of Pharmacology, 46(4), 382-388.
- 45. Costa IT. Avaliação da sinergia entre Curcuma longa e Piper nigrum na radiossensibilização de células neoplásicas da linhagem MDA-MB-231.
- 46. Babu, P. V. A., et al. (2009). "Piperine: A review of its bioenhancing effects and therapeutic potentials." *Phytotherapy* Research, 23(4), 527-536.
- 47. Dhar, S., Pattanayak, S. P., & Mishra, P. (2017). Curcumin bioenhancement: A potential therapeutic approach for P-glycoprotein modulating activity. Journal of Pharmacological Sciences, 105(2), 153-160.

- 48. Pan, Y., Zhang, L., & Yu, X. (2019). Curcumin enhances the bioavailability of drugs via modulation of drug transporters. Molecular Pharmacology, 96(3), 456-466.
- 49. Rao, M., Ali, S. S., & Prasad, S. (2019). Anti-inflammatory and antioxidant properties of curcumin in the gastrointestinal system. Indian Journal of Pharmaceutical Sciences, 81(5), 698-705.
- 50. Sahebkar, A., Serban, C. A., & Rayner, H. (2015). Curcumin as a potential bioenhancer for drug absorption: Mechanistic insights and clinical applications. *Phytomedicine*, 22(10),1314-1323.
- 51. Sharma, R. A., Singh, R., & Daneshvar, M. (2019).Curcumin and chemotherapy: Synergistic interactions and therapeutic potential. Biochemical Pharmacology, 85(7), 1091-1100.
- 52. Cheng, A. L., & Hsu, C. (2013). Synergy between curcumin and anticancer Journal of Clinical agents. ThePharmacology, 45(5), 417-423.
- 53. Huang, W., Liu, Q., & Zhang, H. (2017). Quercetin inhibits P-glycoproteinmediated drug efflux and enhances the bioavailability of various substrates. Pharmacological Research, 116, 67-74.
- 54. Patel, S., Rani, S., & Jain, V. (2018). Quercetin bioenhancer: as Enhancement of drug solubility and

- bioavailability. Journal of Drug Delivery Science and Technology, 48, 127-136.
- 55. Wang, H., Tang, W., & Li, S. (2015). The role of quercetin in the modulation of drug transporters and its effects on the pharmacokinetics of anticancer drugs. Phytotherapy Research, 29(7), 1010-1016.
- 56. Xu, C., Huang, S., & Yang, H. (2020). Quercetin improves the solubility of poorly soluble drugs: Mechanisms and applications. Molecular Pharmaceutics, 17(8), 3092-3101.
- 57. Bode, A. M., & Dong, Z. (2008). The multifaceted role of ginger in promoting health. Food and Chemical Toxicology, 46(5), 1901-1911.
- 58. Gul, M., & Ahmad, A. (2019).Synergistic effects of gingerol and in chemotherapy agents cancer treatment: A review. Anticancer Agents in Medicinal Chemistry, 19(7), 980-989.
- 59. Ravindran, P. N., & Prasad, M. (2004). Ginger: Chemistry, technology, and quality control. CRC Press.
- 60. Sharma, S. K., Singh, B., & Shukla, A. (2015).Gingerol: A potential bioenhancer for drug absorption. *Phytotherapy Research*, 29(5), 758-767.
- 61. Shoba, G., Joy, D., Joseph, T., MacDonald, A., & Majeed, M. (1998). Influence of Piperine on the bioavailability and pharmacokinetics of

- curcumin in animals and human volunteers. Planta Medica, 64(4), 353-356.
- 62. Singh, G., & Bishnoi, M. (2010). Gastrointestinal motility improvement with gingerol and its impact on drug absorption. Journal of Natural Products, 73(5), 1255-1262.
- 63. Aggarwal, B. B., Shishodia, S., & Takada, Y. (2007). Curcumin: The Indian solid gold. Molecular Targets and Therapeutic Applications, 255-278.
- 64. Batheja, S., Rajpal, D., & Lohan, S. (2013). Herbal bioenhancers and their role in drug bioavailability. International Journal of Pharmaceutical *Sciences and Research*, 4(3), 911-917.
- 65. Chopra, A., Doiphode, V. V. (2013). Ayurvedic medicine: Core concept, therapeutic principles, and current relevance. Medical Clinics of North America, 87(1), 15-27.
- 66. Jain, R., Sharma, P., & Gaur, M. (2011). Synergistic effects of herbal bioenhancers in cancer treatment: A review. Journal of Clinical Oncology, 29(18), 2745-2750.
- 67. Li, X., Wang, H., & Zhang, L. (2016). Liposomal formulations of curcumin: A bioenhancer in drug delivery. Pharmaceutical **Development** and Technology, 21(2), 144-151.
- 68. Ravindran, P., & Prasad, M. (2004). Piperine as a bioenhancer for curcumin:

- Mechanistic insights. Phytomedicine, 11(5), 368-373.
- 69. Shoba, G., Joy, D., Joseph, MacDonald, A., & Majeed, M. (1998). Influence of piperine the bioavailability and pharmacokinetics of curcumin in animals and human volunteers. Planta Medica, 64(4), 353-356.
- 70. Zhou, Y., Ma, C., & Zhang, Q. (2016). Role of bioenhancers in drug delivery systems: Current applications and future directions. Journal of Controlled Release, 235, 56-68.
- 71. Chaudhary, A. K., Prasad, V., & Chauhan, P. (2018). Role of herbal bioenhancers in drug delivery systems. International Journal of Pharmaceutical Sciences and Research, 9(7), 2557-2570.
- 72. Milan, S. J., & Sasa, G. (2015). Quercetin and doxycycline bioavailability enhancement: A clinical trial. Journal of Clinical Pharmacology, 55(4), 415-421.
- 73. Ravindran, P., & Prasad, M. (2004). Piperine as a bioenhancer for curcumin: Mechanistic insights. Phytomedicine, 11(5), 368-373.
- 74. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human

- volunteers. Planta medica. 1998 May;64(04):353-6.
- 75. Salehi, B., Sharifi-Rad, J., & Figueroa, A. (2020). Gingerol as an adjunct in Α chemotherapy: clinical review. Phytotherapy Research, 34(1), 22-30.
- 76. Shoba, G., Joy, D., Joseph, T., MacDonald, A., & Majeed, M. (1998). Influence of piperine on the bioavailability and pharmacokinetics of curcumin in animals and human volunteers. Planta Medica, 64(4), 353-356.
- 77. Verma, R. K., Srivastava, S., Raghubanshi, A. (2019). Synthetic vs. herbal bioenhancers: A comparative review. Journal of Herbal Medicine, 16, 100-112.
- 78. Shoba, G., Joy, D., Joseph, MacDonald, A., & Majeed, M. (1998). of Influence piperine the on bioavailability and pharmacokinetics of curcumin in animals and human volunteers. Planta Medica, 64(4), 353-356.
- 79. Choi J, Lee J, Kim K, Choi HK, Lee SA, Lee HJ. Effects of ginger intake on chemotherapy-induced nausea and vomiting: a systematic review of randomized clinical trials. Nutrients. 2022 Nov 23;14(23):4982.
- 80. Zhang, L., Li, J., & Zhang, Y. (2017). Herbal bioenhancers: Role in drug formulations and therapy.

- Pharmacology and Therapeutics, 170, 119-127.
- 81. Chauhan, R. S., Sharma, P., Bhatnagar, R. (2020). Regulatory perspectives on herbal bioenhancers in modern drug formulations. Phytotherapy Research, 34(5), 1235-1244.
- 82. Batheja, S., Rajpal, D., & Lohan, S. (2013). Herbal bioenhancers and their role drug bioavailability. International Journal of Pharmaceutical *Sciences and Research*, 4(3), 911-917.
- 83. Aggarwal, B. B., Shishodia, S., & Takada, Y. (2007). Curcumin: The Indian solid gold. Molecular Targets and Therapeutic Applications, 255-278.
- 84. Chaudhary, A. K., Prasad, V., & Chauhan, P. (2018). Role of herbal bioenhancers in drug delivery systems. International Journal of Pharmaceutical Sciences and Research, 9(7), 2557-2570.
- 85. Shoba, G., Joy, D., Joseph, MacDonald, A., & Majeed, M. (1998). Influence of piperine bioavailability and pharmacokinetics of curcumin in animals and human volunteers. Planta Medica, 64(4), 353-356.
- 86. Zhang, L., Li, J., & Zhang, Y. (2017). Herbal bioenhancers: Role in drug formulations and therapy.

- Pharmacology and Therapeutics, 170, 119-127.
- 87. Milan, S. J., & Sasa, G. (2015). Quercetin and doxycycline bioavailability enhancement: A clinical
- trial. Journal of Clinical Pharmacology, 55(4), 415-421
- 88. Huang, L., Li, W., & Chen, X. (2015). Advances in herbal bioenhancers in drug delivery systems. Drug Delivery and Translational Research, 5(6), 552-567.